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ABSTRACT: In this paper we extend some existing results and prove fixed point theorem on partially
ordered cone metric spaces which satisfy certain weak contractive inequalities.
I'n this consequence we have also given someillustrative examples.
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I.INTRODUCTION

Generalization of metric space has been introduced as
cone metric space where every pair of elements is
assigned to an element of a Banach space equipped
with a cone which induces a natural partial order [16].
Other fixed point theorems in cone metric spaces were
deduced in several other recently published works,
some of which are noted in[14, 17, 19, 20].

Recently fixed point theory has developed rapidly in
partially ordered metric spaces; that is, metric spaces
endowed with a partial ordering. Earlier aresult in this
direction was established by Turinici in ordered
metrizable uniform spaces [28]. Later Ran and Reurings
established a fixed point result in partially ordered
metric spaces and applied it to solve certain matrix
equations [25].

Several other more recent works in this area are noted
in[1, 15, 23].

Generalization of Banach’s contraction principle is
weak contraction principle which was first given by
Alber et a. in Hilbert spaces [2] and subsequently
extended to metric spaces by Rhoades [26].

In severa works like [4, 12, 13, 29] fixed point
problems involving weak contractions and mappings
satisfying weak contraction type inequalities have been
considered . Particularly, in cone metric spaces the
weak contraction principle was extended by the present
authors [9]. The use of control function in fixed point
theory was initiated by Khan et al. [21] which they
caled Altering distance function. This function has
been used in obtaining fixed point results in metric
spaces [5, 22, 27] and probabilistic metric spaces|7, 8].
In this paper we prove some fixed point results in cone
metric spaces having a partial order by using a control
function. Precisely, we show that certain functions will
have fixed points if they satisfy certain weak

contractive inequalities. Our results extend the results
of Altun et al. [3] in the special ordered cone metric
spaces where the cone metric d(x, y) for x # vy, is
constrained to the interior of the cone.

I1. DEFINITIONS

Definition 2.1([16]) Let E always be a real Banach
space and P a subset of E. Piscalled aconeif and only
if:

0] P is nonempty, closed, and P#{ 0},

(i) ab Rab20,x,y P ax+by P,

(iii) x Pand-x P x=0.
Givenacone P E, apartial ordering< with respect to
Pisnaturally defined by x<y ifand only ify—x O P,
for x, y O E. We shall write x <y to indicate that x <y
but x # y, while x y will stand for y—x intP, where
intP denotes the interior of P.
The cone P is said to be normal if there exists a real
number K >0 such that for al x,y E,

Osx=sy |x|I<Kllyll
The least positive number K satisfying the above
statement is called the normal constant of P.
The cone P is called regular if every increasing
sequence which is bounded from above is convergent;
that is, if {x,} isasequence such that

X1€SXoS ... SXp ... SY,

for somey E, thenthereisx E such that |[x, — X||-
Oasn - oo,
Equivalently, the cone P is regular if and only if every
decreasing sequence which is bounded from below is
convergent. It is well known that a regular cone is a
normal cone. In the following we always suppose that E
is area Banach space with cone P in E with intP# @
and< is the partial or dering with respect to P.
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Definition 2.2 A function ¢ : P — P is called an
Altering distance function if the following properties
are satisfied:
(i)  is strongly monotone increasing and continuous,
(i) wt)=0ifand only ift=0.
Definition 2.3 ([16]) Let X be a nonempty set. Let the
mapping d: X x X — E satisfies
() 0<d(x,y), forall x,y X andd(x,y) =0if and
onlyif x=vy,
(i) d(x, y) =d(y, x), foradl x,y X,
(ii)d(x, y) <d(x,z) +d(z, y), forall x,y,z X.
Then d is called a cone metric on X and (X, d) iscalled
acone metric space.
Definition 2.4 ([17]) Let (X, d) be a cone metric space,
f: X - Xand x, X.Then thefunction f is continuous
at xq if for any sequence {x,} in X, X, - Xq implies
fXn—- fXo.
Definition 2.5 ([3]) Let (X, <) be a partially ordered
set. Two mappingsf, g: X — X are said to be weakly
increasing if
fx < gfx and gx < fgx hold for al x  X.
Definition 2.6 ([15]) Let (X, <) be a partially ordered
setand T : X —— X be a self map. We say that T is
monotone nondecreasing if X,y X, xsy Tx<Ty.
Lemma 2.1 ([16]) Let (X, d) be a cone metric space, P
be anormal cone and {x,} be asequencein X. Then:

0] {xn} convergesto x if and only if d(x,, X)

—~0asn - oo,

(i) {xn} is a Cauchy sequence if and only if d(x,,

Xm) - 0asn,m - oo.
Lemma 2.2 Let E be areal Banach space with cone P
inE. Then

(i) ifasbandb c,thena c[19],

(i) ifa bandb c,thena c[19],

(iii) if 0 x <y and a = 0, where a is real number,

then 0 < ax < ay [19],
(iv) if0<x,<y, forn Nandlimx,=x,limy,
=y, then0< x <y [19],

Pisnormal if and only if x, <y, <z,and limx, =lim
z,=ximply limy, =x[11].
Lemma 2.3 ([10]) Let (X, d) be a cone metric space
with regular cone P such that d(x, y) intP, forx,y X
withxzy. Let @ :intP {0} — intP {0} beafunction
with the following properties:
() () =0ifandonly if t=0,

(i) @(t) t,fort intPand
(iii) either @(t) < d(x, y) or d(x, y) < o(t), for t intP
{0} andx,y X.

Let {x,} be aseguence in X for which {d(X,, Xn1)} is
monotonic decreasing.

Then {d(x,, X+1)} isconvergent to eitherr=0orr int
P.

II. MAIN RESULTS

Lemma 3.1. Let (X, d) be a cone metric space. Let o :
intP {0} —— intP {0} be a function such that (i)
e(t)=0ifandonlyif t=0and
(i) @) tfort intP.
Then a sequence {x,} in X is a Cauchy sequence if and
only if for every ¢ E with 0 c there existsng N
such that d(X,, Xm)  @(c), for al n, m> n,.
Proof. Suppose that {x,} is a Cauchy sequence. Then
for every c EwithO cthereexistsn, N such that
d(x,, Xm) ¢, foraln, m>n. Letc EwithO cbe
arbitrary.
By condition (i) of the lemma @(c) int P; that is, O
(). Therefore, there existsng N such that d(Xp, Xm )
o(c), for al n, m>n.
Conversely suppose that for every ¢ Ewith 0 cthere
existsn0 N such that d(x,, Xn) o(c), for al n, m >
ng. Since ¢ intP, by condition (ii) of the lemma, we
have @(c) c.
Combining the above two inequalities by using the
property (ii) of lemma 2.2, we obtain d(x,, X, ) ¢, for
aln,m>ng.
Therefore, for everyc  EwithO cthereexistsng N
such that d(X,, X,) ¢, for al n, m>n,.
Hence {x,} isa Cauchy sequence.
Theorem 3.1 Let (X, ) be a partialy ordered set and
suppose that there exists a cone metric d in X for which
the cone metric space (X, d) is complete with regular
cone Psuchthat d(x,y) intP,forx,y X withx
x #Yy. Let f: X —-- X be a continuous and non
decreasing mapping with respect to < satisfying

P(d(fx, fy)) < Y(M(x, y)) = @(d(x, y)), for al x, y
X withy < x, (3.2
where

M(x,y) = pd(x, y) + q[d(x, fx) + d(y, fy)] + 1 [d(x,
fy) + d(y, fx)], with

p,a,r=0,p+2qg+2r<l,and Y :P - Pand @ :
intP {0} - intP {0}
are continuous functions with the following properties:
(i) @ is strongly monotonic increasing,
(i) Y(t) =0 =¢(t) ifand only if t =0,

(iii) @(t) t,fort intPand

(iv) either @(t) < d(x, y) or d(X, y) ¢(t), fort intP
{0} andx,y X.

If there exists X, X such that X, fxg, then f has a
fixed point in X.

Proof. If fxg= X, then the proof is completed. Suppose
that fXg Z Xo. Since Xq X and f is nondecreasing w.r.t.
< ,we construct the sequence {x,} such that x,, = fx,; =
%o and Xo < fXo< %o .. < M xo < f™ %o < ...; that is, X
X1 SEXoS L S XS X1 S
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Clearly, X, < Xn1, for eachn= 1. Putting x = X, and
Yy = Xp in(3.1) we have
P(d(Xnv2, Xne1)) = W(A(FXpsa, X))

S Y(M(Xns1, X)) = @(A(Xns1, Xn))

= P(p d(Xne1, Xn) + 0 [d(Xpet, Xne2) +
d(Xne1, Xn))]

tr [d(Xn+1n Xn+1)) + d(Xni Xn+2) d(Xni
Xn2)] = @(Ad(Xns1, Xn)))-
Since d(Xn, Xns2)) < d(Xn, Xne1) + d(Xne1, Xnez)and @ is
strongly monotonic increasing,
it follows that
P([d(Xns2s Xn+1)) < WP [A(X a1, X))+ O [[A(Xne1, Xne2)+
[d(Xn, Xn+2))]

+ 1 [[dXn Xee)t [A(Xne1, Xne2)]) -
@([d(Xn+1, Xn))- (3.2)
Using a property of ¢, we have
P([d(Xnr2, X)) < WP [A(Xner, X)+ G [[AXnez, Xne2)+
[d(Xn, Xne2))]

+ 1 [[d(Xn, Xns2)+ [A(Xne2, Xni2)])
Using the strongly monotone property of ), we have
d(Xn+2a Xn+l) < p [d(xn+ly Xn)+ q [[d(xn+la Xn+2)+ [d(xna

Xni1))]

that is,
(1-9-1)dXm2 X)) S (P + G+ 1) d(Xpea, Xn)
that is,
d(Xne2, Xne1) < (PH+1) (1-0-T) d(Xner, Xn),
which implies that
:S(Xn+21 Xn1) < d(Xne1, Xn), (SiNCe (ptatr) / (1-g-r) <
Therefore, { d(Xn+1, Xn) }iS a monotone decreasing
sequence. Hence by lemma 2.3, there exists
u Pwitheitheru=0o0ru int P such that
d(Xpe1, Xp) —» UASN — 00, (3.3
Taking n - « in (3.2), using (3.3) and the continuities
of Y and ¢, we have
Pu) < P((p + 2q + 2r)u) — @(u), which implies that
P(u) < P(u) - @(u), (sincep+2qg+2r<landyis
strongly monotonic increasing),
which isa contradiction unless u = 0.
Hence, d(Xys1, Xn) — 0asn—— . (3.4)
Next we show that {xn} is a Cauchy sequence. If {xn}
is not a Cauchy segquence, then by lemma 3.1, there
exisssac EwithO c,suchthat ny N, nm N
with n> m = ng such that
d(x,, Xm) <# o(c). Hence by a property of ¢ in (iv) of
the theorem, @(c) < d(Xp, Xm)
Therefore, there exist sequences {m(k)} and {n(k)} in
N such that for all positive integersk,

n(k) > m(k) > k and d(Xnk, Xmk) = ©(C).

+ 1 [d(Xn, Xne1)+ A(Xne1, Xns2)]

Assuming that n(k) is the smallest such positive integer,
we get d(Xnks Xmi) 2 @(C)

Now, @(c) < d(Xn, Xmi) < d(Xn, Ximgen)) + AXmgke2), X i)
that is,

@(€) < d(Xnk, Xmi) < d(X ks Xmee1)) + @(C)-

Letting k — oo in the above inequality, using (3.4) and
the property (v) of Lemma 2.2,
we have

limk - o d(Xgy, Xmd) = @(C).
Again,

d(Xnie Xmi) < d(Xpo Xmen)) + AXngerr)s X)) +
d(Xmics Xm(k))
and A(Xnkr Xm+1) < d(Xngerrys X ncy) + XKoo Xmid) +
d(Xmir Xm(k1))

Letting k — o in above inequalities, using (3.4) and
(3.5), we have

lim k- o0 d(Xp(er2), Xmiks1)) = @(C).
Again,
d(Xrker Xmer1y) S X ier Ximi) + X X )
and
d(xnka ka) = d(xnka Xm(k+l)) + d(ka, Xm(k+1))

Letting k - o in the above four inequalities, using

(3.4) and (3.5), we have
lim k- 0 d(X, Xme)) = @(C),
limk— o d(xn(+1)k- Xmk) = @(C).

Using (3.4), (3.5), (3.7) and (3.8), we have

lim k- oo M(Xnk- ka) =limk- o [p d(xnki ka) ) +

q (A(Xnks Xnk+1))) + AKXk Xi(e+1)))

(;'9; d(Xnks X)) + Xk Xnks))] = (P + 2r) @(C).
Clearly, Xm(K) £ Xq(k) . Putting X = Xn(K), y = X(K) in
(3.1), we have

P dXno Xmeern) = WAoo Xmd ) < WIM(X g,

Xmk) )~ @(d(Xrks Xemk) )-

Letting k — oo in the above inequality, using (3.5),
(3.6), (3.9) and the continuities of ¢ and ¢, we have
W(e(c)) = W((p + 2r) 9(0)) ~ @(v(0)), that is,

W(e(c)) = W(@())-¢(e(c)), (since p+ 2r< 1 and Y
is strongly monotonic increasing),
which is a contradiction by virtue of a property of .

Hence {x,} isa Cauchy sequence.

From the completeness of X, there exists z
that X, - zasn — oo. (3.10)
Since f is continuous and X, - zas n — oo, limn- o
fx, =fz, that is,

limn- o X, =fz, that is, =fz.

Hence z is a fixed point of f and the proof is

completed.

(3.5)

(3.6)

(3.7)
(3.9)

X such
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