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ABSTRACT: In this paper we extend some existing results and prove fixed point theorem on partially
ordered cone metric spaces which satisfy certain weak contractive inequalities.
In this consequence we have also given some illustrative examples.
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I. INTRODUCTION

Generalization of metric space has been introduced as
cone metric space  where every pair of elements is
assigned to an element of a Banach space equipped
with a cone which induces a natural partial order [16].
Other fixed point theorems in cone metric spaces were
deduced in several other recently published works,
some of which are noted in [14, 17, 19, 20].
Recently fixed point theory has developed rapidly in
partially ordered metric spaces; that is, metric spaces
endowed with a partial ordering. Earlier a result in this
direction was established by Turinici in ordered
metrizable uniform spaces [28]. Later Ran and Reurings
established a fixed point result in partially ordered
metric spaces and applied it to solve certain matrix
equations [25].
Several other more recent works in this area are noted
in [1, 15, 23].
Generalization of Banach’s contraction principle is
weak contraction principle which was first given by
Alber et al. in Hilbert spaces [2] and subsequently
extended to metric spaces by Rhoades [26].
In several works like [4, 12, 13, 29] fixed point
problems involving weak contractions and mappings
satisfying weak contraction type inequalities have been
considered . Particularly, in cone metric spaces the
weak contraction principle was extended by the present
authors [9]. The use of control function in fixed point
theory was initiated by Khan et al. [21] which they
called Altering distance function. This function has
been used in obtaining fixed point results in metric
spaces [5, 22, 27] and probabilistic metric spaces [7, 8].
In this paper we prove some fixed point results in cone

metric spaces having a partial order by using a control
function. Precisely, we show that certain functions will
have fixed points if they satisfy certain weak

contractive inequalities.  Our results extend the results
of  Altun et al. [3]  in the special ordered cone metric
spaces where the cone metric d(x, y) for x ≠ y, is
constrained to the interior of the cone.

II. DEFINITIONS

Definition 2.1([16]) Let E always be a real Banach
space and P a subset of E. P is called a cone if and only
if:

(i) P is nonempty, closed, and P ≠{ 0},
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P,
(iii) x ∈ P and − x ∈ P ⇒ x = 0.

Given a cone P ⊂ E, a partial ordering ≤ with respect to
P is naturally de fined by x ≤ y if and only if y − x ∈ P,
for x, y ∈ E. We shall write x < y to indicate that x ≤ y
but x ≠  y, while x ≪ y will stand for y − x ∈ intP, where
intP denotes the interior of P.
The cone P is said to be normal if there exists a real
number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y ⇒ ||x|| ≤ K||y||.
The least positive number K satisfying the above
statement is called the normal constant of P.
The cone P is called regular if every increasing
sequence which is bounded from above is convergent;
that is, if {xn} is a sequence such that

x1 ≤ x2 ≤ ... ≤ xn ≤ ... ≤ y,
for some y ∈ E, then there is x ∈ E such that ||xn − x||→
0 as n → ∞.
Equivalently, the cone P is regular if and only if every
decreasing sequence which is bounded from below is
convergent. It is well known that a regular cone is a
normal cone. In the following we always suppose that E
is a real Banach space with cone P in E with intP ≠ φ
and ≤ is the partial ordering with respect to P.
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Definition 2.2 A function ψ : P → P is called an
Altering distance function if the following properties
are satisfied:
(i)   ψ is strongly monotone increasing and continuous,
(ii) ψ(t) = 0 if and only if t = 0.
Definition 2.3 ([16]) Let X be a nonempty set. Let the
mapping d : X × X → E satisfies
(i) 0 ≤ d(x, y), for all x, y ∈ X and d(x, y) = 0 if and
only if x = y,
(ii) d(x, y) = d(y, x), for all x, y ∈ X,
(iii)d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.
Then d is called a cone metric on X and (X, d) is called
a cone metric space.
Definition 2.4 ([17]) Let (X, d) be a cone metric space,

f : X → X and x0 ∈ X. Then the function f is continuous
at x0 if for any sequence {xn} in X, xn → x0 implies
fxn→ fx0.
Definition 2.5 ([3]) Let (X, ≤) be a partially ordered

set. Two mappings f, g : X → X are said to be weakly
increasing if
fx gfx and gx fgx hold for all x ∈ X.

Definition 2.6 ([15]) Let (X, ≤) be a partially ordered
set and T : X −→ X be a self map. We say that T is
monotone nondecreasing if x, y ∈ X, x y ⇒ T x T y.
Lemma 2.1 ([16]) Let (X, d) be a cone metric space, P

be a normal cone and {xn} be a sequence in X. Then:
(i) {xn} converges to x if and only if d(xn, x)

→ 0 as n → ∞,
(ii) {xn} is a Cauchy sequence if and only if d(xn,
xm) → 0 as n, m → ∞.

Lemma 2.2 Let E be a real Banach space with cone P
in E. Then

(i) if a ≤ b and b ≪ c, then a ≪ c [19],
(ii) if a ≪ b and b ≪ c, then a ≪ c [19],
(iii) if 0 ≤ x ≤ y and a ≥ 0, where a is real number,

then 0 ≤ ax ≤ ay [19],
(iv) if 0 ≤ xn ≤ yn, for n ∈ N and lim xn = x, lim yn

= y, then 0 ≤ x ≤ y [19],
P is normal if and only if xn ≤ yn ≤ zn and lim xn = lim
zn = x imply lim yn = x [11].
Lemma 2.3 ([10]) Let (X, d) be a cone metric space
with regular cone P such that d(x, y) ∈ intP, for x, y ∈ X
with x≠ y. Let ϕ : intP ∪ {0} → intP ∪ {0} be a function
with the following properties:
(i) ϕ(t) = 0 if and only if t = 0,

(ii) ϕ(t) ≪ t, for t ∈ intP and
(iii) either ϕ(t) ≤ d(x, y) or d(x, y) ≤ ϕ(t), for t ∈ intP ∪
{0} and x, y ∈ X.
Let {xn} be a sequence in X for which {d(xn, xn+1)} is
monotonic decreasing.
Then {d(xn, xn+1)} is convergent to either r = 0 or r ∈ int
P.

II. MAIN RESULTS

Lemma 3.1. Let (X, d) be a cone metric space. Let ϕ :
intP ∪ {0} −→ intP ∪ {0} be a function such that (i)
ϕ(t) = 0 if and only if t = 0 and
(ii) ϕ(t) ≪ t, for t ∈ intP.
Then a sequence {xn} in X is a Cauchy sequence if and
only if for every c ∈ E with 0 ≪ c there exists n0 ∈ N
such that d(xn, xm) ≪ ϕ(c), for all n, m > n0.
Proof. Suppose that {xn} is a Cauchy sequence. Then
for every c ∈ E with 0 ≪ c there exists n0 ∈ N such that
d(xn, xm) ≪ c, for all n, m > n0. Let c ∈ E with 0 ≪ c be
arbitrary.
By condition (i) of the lemma ϕ(c) ∈ int P; that is, 0 ≪
ϕ(c). Therefore, there exists n0 ∈ N such that d(xn, xm )≪
ϕ(c), for all n, m > n0.
Conversely suppose that for every c ∈ E with 0 ≪ c there
exists n0 ∈ N such that d(xn, xm ) ≪ ϕ(c), for all n, m >
n0. Since c ∈ intP, by condition (ii) of the lemma, we
have ϕ(c) ≪ c.
Combining the above two inequalities by using the
property (ii) of lemma 2.2, we obtain d(xn, xm )≪ c, for
all n, m > n0.
Therefore, for every c ∈ E with 0 ≪ c there exists n0 ∈ N

such that d(xn, xm ) ≪ c, for all n, m > n0.
Hence {xn} is a Cauchy sequence.
Theorem 3.1 Let (X, ≪ ) be a partially ordered set and
suppose that there exists a cone metric d in X for which
the cone metric space (X, d) is complete with regular
cone P such that d(x, y) ∈ intP, for x, y ∈ X with x
x ≠ y. Let f : X −→ X be a continuous and non

decreasing mapping with respect to satisfying
ψ(d(fx, fy)) ≤ ψ(M(x, y)) − ϕ(d(x, y)), for all x, y ∈

X with y x,                               (3.1)
where

M(x, y) = p d(x, y) + q [d(x, fx) + d(y, fy)] + r [d(x,
fy) + d(y, fx)], with

p, q, r ≥ 0, p + 2q + 2r ≤ 1, and ψ : P → P and ϕ :
intP ∪ {0} → intP ∪ {0}
are continuous functions with the following properties:
(i) ψ is strongly monotonic increasing,
(ii) ψ(t) = 0 = ϕ(t) if and only if t = 0,

(iii) ϕ(t) ≪ t, for t ∈ intP and
(iv) either ϕ(t) ≤ d(x, y) or d(x, y) ≪ ϕ(t), for t ∈ intP ∪
{0} and x, y ∈ X.
If there exists x0 ∈ X such that x0 ∈ fx0, then f has a
fixed point in X.
Proof. If fx0= x0, then the proof is completed. Suppose
that fx0 ≠ x0. Since x0 ∈ fx0 and f is nondecreasing w.r.t.
≤ ,we construct the sequence {xn} such that xn = fxn-1 =
fnx0 and x0 ≤ fx0 ≤ f2x0 .. ≤ fn x0 ≤ fn+1 x0 ≤ ...; that is, x0

≤x1 ≤ x2 ≤ ... ≤ xn ≤ xn+1 ≤ ...
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Clearly,  xn ≤ xn+1, for each n ≥ 1. Putting  x =  xn+1 and
y =  xn in (3.1) we have
ψ(d(xn+2, xn+1)) = ψ(d(fxn+1, fxn))

≤ ψ(M(xn+1, xn)) − ϕ(d(xn+1, xn))
= ψ(p d(xn+1, xn) + q [d(xn+1, xn+2) +

d(xn+1, xn))]
+ r [d(xn+1, xn+1)) + d(xn, xn+2) d(xn,

xn+2)] − ϕ(d(xn+1, xn))).
Since d(xn, xn+2)) ≤ d(xn, xn+1) + d(xn+1, xn+2)and ψ is
strongly monotonic increasing,
it follows that
ψ([d(xn+2, xn+1)) ≤ ψ(p [d(x n+1, xn)+ q [[d(xn+1, xn+2)+

[d(xn, xn+1))]
+ r [[d(xn, xn+1)+ [d(xn+1, xn+2)]) −

ϕ([d(xn+1, xn)). (3.2)
Using a property of ϕ, we have

ψ([d(xn+2, xn+1)) ≤ ψ(p [d(x n+1, xn)+ q [[d(xn+1, xn+2)+
[d(xn, xn+1))]

+ r [[d(xn, xn+1)+ [d(xn+1, xn+2)])
Using the strongly monotone property of ψ, we have
d(xn+2, xn+1) ≤ p [d(xn+1, xn)+ q [[d(xn+1, xn+2)+ [d(xn,
xn+1))]

+ r [d(xn, xn+1)+ d(xn+1, xn+2)]
that is,
(1 − q − r) d(xn+2, xn+1) ≤  (p + q + r) d(xn+1, xn)

that is,
d(xn+2, xn+1) ≤ (p+q+r) (1−q−r) d(xn+1, xn),
which implies that
d(xn+2, xn+1) ≤ d(xn+1, xn), (since (p+q+r) / (1−q−r) ≤

1).
Therefore, { d(xn+1, xn) }is a monotone decreasing
sequence. Hence by lemma 2.3, there exists
u ∈ P with either u = 0 or u ∈ int P such that
d(xn+1, xn) → u as n → ∞.         (3.3)
Taking n → ∞ in (3.2), using (3.3) and the continuities
of ψ and ϕ, we have
ψ(u) ≤ ψ((p + 2q + 2r)u) − ϕ(u), which implies that
ψ(u) ≤ ψ(u) − ϕ(u), (since p + 2q + 2r ≤ 1 and ψ is

strongly monotonic increasing),
which is a contradiction unless u = 0.
Hence, d(xn+1, xn) → 0 as n −→ ∞. (3.4)
Next we show that {xn} is a Cauchy sequence. If {xn}
is not a Cauchy sequence, then by lemma 3.1, there
exists a c ∈ E with 0 ≪ c, such that ∀ n0 ∈ N, ∃ n, m ∈ N
with n > m ≥ n0 such that
d(xn, xm) < ≠ ϕ(c). Hence by a property of ϕ in (iv) of

the theorem, ϕ(c) ≤ d(xn, xm)
Therefore, there exist sequences {m(k)} and {n(k)} in
N such that for all positive integers k,

n(k) > m(k) > k and d(xnk, xmk) ≥ ϕ(c).

Assuming that n(k) is the smallest such positive integer,
we get         d(xnk, xmk) ≥ ϕ(c)
Now, ϕ(c) ≤ d(xnk, xmk) ≤ d(xnk, xm(k-1)) + d(xm(k-1), x nk)
that is,

ϕ(c) ≤ d(xnk, xmk) ≤ d(xnk, xm(k-1)) + ϕ(c).
Letting k → ∞ in the above inequality, using (3.4) and
the property (v) of Lemma 2.2,
we have

lim k → ∞ d(xnk, xmk)  = ϕ(c). (3.5)
Again,

d(xnk, xmk) ≤ d(xnk, xm(k+1))) + d(xn(k+1), xm(k+1)) +
d(xmk, xm(k))
and        d(xnk, xm(k+1)) ≤ d(xn(k+1), x nk )) + d(xnk, xmk)  +
d(xmk, xm(k+1))
Letting k → ∞ in above inequalities, using (3.4) and

(3.5), we have
lim k→∞ d(xn(k+1), xm(k+1)) = ϕ(c). (3.6)

Again,
d(xnk, xm(k+1)) ≤ d(xnk, xmk) + d(xmk, xm(k+1))

and
d(xnk, xmk) ≤ d(xnk, xm(k+1)) + d(xmk, xm(k+1))

Letting k → ∞ in the above four inequalities, using
(3.4) and (3.5), we have

lim k→∞ d(xnk, xm(k+1))  = ϕ(c), (3.7)
lim k→∞ d(xn(+1)k, xmk) = ϕ(c). (3.8)

Using (3.4), (3.5), (3.7) and (3.8), we have
lim k→∞ M(xnk, xmk)  = lim k→∞ [p d(xnk, xmk)  ) +

q (d(xnk, xn(k+1))) + d(xmk, xm(k+1)))
+ r d(xnk, xm(k+1))  + d(xmk, xn(k+1))] = (p + 2r) ϕ(c).

(3.9)
Clearly, xm(k) ≤  xn(k) . Putting x = xn(k), y = xm(k) in

(3.1), we have
ψ d(xnk, xm(k+1))   =  ψ(d(fxnk,f xmk)  ) ≤ ψ(M(x nk,

xmk) ) − ϕ(d(xnk, xmk)  ).
Letting k → ∞ in the above inequality, using (3.5),
(3.6), (3.9) and the continuities of ψ and ϕ, we have
ψ(ϕ(c)) ≤ ψ((p + 2r) ϕ(c)) − ϕ(ϕ(c)), that is,

ψ(ϕ(c)) ≤ ψ(ϕ(c))−ϕ(ϕ(c)), (since p+ 2r ≤ 1 and ψ
is strongly monotonic increasing),
which is a contradiction by virtue of a property of ϕ.
Hence {xn} is a Cauchy sequence.
From the completeness of X, there exists z ∈ X such

that xn → z as n → ∞.                       (3.10)
Since f is continuous and xn → z as n → ∞, limn→∞
fxn = fz, that is,

limn→∞ xn+1 = fz, that is,  = fz.
Hence z is a fixed point of f and the proof is

completed.
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